
J. Fluid Mech. (2008), vol. 611, pp. 97–106. c© 2008 Cambridge University Press

doi:10.1017/S002211200800284X Printed in the United Kingdom

97

Aeroelastic instability of cantilevered
flexible plates in uniform flow

CHRISTOPHE ELOY, ROMAIN LAGRANGE,
CLAIRE SOUILLIEZ AND LIONEL SCHOUVEILER
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We address the flutter instability of a flexible plate immersed in an axial flow.
This instability is similar to flag flutter and results from the competition between
destabilizing pressure forces and stabilizing bending stiffness. In previous experimental
studies, the plates have always appeared much more stable than the predictions of
two-dimensional models. This discrepancy is discussed and clarified in this paper by
examining experimentally and theoretically the effect of the plate aspect ratio on
the instability threshold. We show that the two-dimensional limit cannot be achieved
experimentally because hysteretical behaviour and three-dimensional effects appear
for plates of large aspect ratio. The nature of the instability bifurcation (sub- or
supercritical) is also discussed in the light of recent numerical results.

1. Introduction
The flutter of a flexible plate immersed in an axial flow is a canonical example

of flow-induced vibrations. This instability can be observed in everyday life when
a flag flaps in the wind. Because this phenomenon appears in many applications
(paper industry, airfoil flutter, snoring), it has motivated a large literature which has
been recently reviewed by Päıdoussis (2004). This instability can be regarded as a
competition between fluid forces and elasticity. When the plate experiences a small
lateral deflection, a destabilizing pressure jump can appear across the plate, while the
bending stiffness tends to bring the plate back to the stable planar state.

This system can be studied by restricting the analysis to one-dimensional flutter
modes as observed in most experiments. In this case, the plate motion obeys the
Euler–Bernoulli beam equation with additional pressure forces which are calculated
by assuming a potential flow. To simplify the problem further, Shelley, Vandenberghe
& Zhang (2005) considered a plate infinite in both directions in a similar way to the
stability analysis of a jet by Lord Rayleigh (1879) who noted in his seminal paper the
analogy with the problem of flag flutter.

In other theoretical studies, the plate length L (or chord) takes a finite value
while two asymptotic limits are considered for its span H . If H � L, the fluid
forces can be calculated using the slender body theory of Lighthill (1960) (e.g.
Datta & Gottenberg 1975; Lemaitre, Hémon & de Langre 2005) and if H � L

the problem can be treated as two-dimensional (as done by Kornecki, Dowell &
O’Brien 1976; Huang 1995; Watanabe et al. 2002a; Guo & Päıdoussis 2000). In
this latter case, the flow is entirely described by point vortices which are distributed
within the plate and possibly in its wake. It is known from airfoil theory that this
problem does not admit a unique solution (intrinsically because the Laplace equation
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has to be solved on an open domain). Kornecki et al. (1976) used two approaches
to treat this non-uniqueness. They first considered that the total circulation around
the plate vanishes and thus no vorticity is shed in the wake. Second, they used the
Kutta condition applied at the trailing edge to prescribe the circulation around the
plate as Theodorsen (1935) did in his study of airfoil flutter (see also Crighton 1985
for an application of the Kutta hypothesis to unsteady flows). The Kutta condition
imposes advected vortices in the wake which makes this model more physical for the
flag-type instability (see for instance chapter 5-6 of Bisplinghoff, Ashley & Halfman
1983). Note that this shed vorticity can equivalently be regarded as a consequence
of Kelvin’s circulation theorem. Using these two-dimensional flow models, a stability
analysis can be carried out that permits the prediction of the critical velocity for plate
flutter.

The first visualizations of the flutter instability were performed with flags made
of various fabrics by Taneda (1968). A few years later, Datta & Gottenberg (1975)
carried out experiments with long ribbons hanging in airflow. This slender body
limit (H � L) has been re-examined recently by Lemaitre et al. (2005) and results
show good agreement with linear stability analysis. For larger aspect ratios, Huang
(1995), Yamaguchi et al. (2000) and Watanabe et al. (2002b) have considered the
effects of both the plate length and of the material properties on the flutter instability.
However, to our knowledge, the effect of aspect ratio has not been investigated up to
now.

Cantilevered plates in axial flow have also been modelled numerically. Watanabe
et al. (2002a) and Balint & Lucey (2005) used a two-dimensional Navier–Stokes
solver combined with a linear beam model for the plate. The critical velocities found
in these studies agree with the results of two-dimensional stability analysis. The
nature of the bifurcation in this flutter instability has also been studied using a
nonlinear beam equation for the plate and two-dimensional (Tang & Päıdoussis 2007)
or three-dimensional (Tang, Yamamoto & Dowell 2003) vortex methods to model
the potential flow. Similarly to the slender body limit (Yadykin, Tenetov & Levin
2001), the bifurcation is shown to be supercritical in these models. However, Alben
& Shelley (2008) recently found hysteresis and bistability using a two-dimensional
model taking into account the nonlinearities originating both from the flow and from
the elastic plate. Hysteresis has also been reported in previous experiments with an
hysteresis loop at least an order of magnitude wider than in the simulations of Alben
& Shelley (2008). This indicates a subcritical bifurcation. To date, the real nature of
the bifurcation and the apparent discrepancy between most numerical models and
the experiments remains unexplained.

The results of existing two-dimensional models have been compiled by Watanabe
et al. (2002a) and compared with existing experimental data (see also the recent
comparison made by Tang & Päıdoussis 2007). Remarkably all these theories predict
approximately the same critical velocities but strongly underestimate the measured
thresholds. In other words, the plate appears systematically more stable than predicted
by a two-dimensional approximation. This discrepancy has motivated the recent study
of Eloy, Souilliez & Schouveiler (2007) in which the finite plate span is explicitly taken
into account in the analysis. Shayo (1980) first addressed the effect of aspect ratio on
the flutter instability. However, he made several mathematical assumptions to simplify
the stability analysis which led him to falsely conclude that the larger the aspect ratio
is the more stable is the system. The present paper compares the predictions of Eloy
et al. (2007) with experimental measurements in which the effect of the plate aspect
ratio is extensively investigated.
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Figure 1. Sketches of (a) the experimental setup and (b) the flexible plate subject to the
one-dimensional deflection z(x, t).

2. Physical model
As shown in figure 1, we consider a flexible plate of span H and length L, lying

in the vertical plane (Oxy) and immersed in an axial flow of velocity U . Its flexural
rigidity is given by D = Eh3/12(1 − ν2), where E is Young’s modulus, h the plate
thickness and ν its Poisson’s ratio. For small lateral deflections z(x, t), the plate
motion is driven by the linearized Euler–Bernoulli equation

m ∂2
t z + D ∂4

x z + 〈p〉 = 0, (2.1)

where m is the mass per unit surface of the plate, p(x, y, t) is the pressure jump across
the plate and the notation 〈.〉 stands for the average along the span H . Equation (2.1)
is valid in the limit of an inviscid fluid and for a material of negligible viscoelastic
damping. In addition the deflection z satisfies clamped boundary conditions at the
leading edge: z(0) = ∂xz(0) = 0 and free boundary conditions at the trailing edge:
∂2

x z(L) = ∂3
x z(L) = 0.

Assuming an inviscid flow, the perturbation velocity can be fully described by the
vorticity distribution in the flow. Vortex lines are located in the plate and in its wake
as sketched in figure 1(b). The pressure jump across the plate only depends on the
y-component of the vorticity distribution γ (x, y, t) through the unsteady Bernoulli
equation

∂xp = ρ(∂t + U∂x)γ, (2.2)

where ρ is the fluid density and γ has the dimension of a velocity (i.e. a circulation per
unit length). As seen from (2.2) a vorticity distribution of the form γ0(y) exp[i(kx−ωt)]
with wave velocity ω/k = U is compatible with a zero pressure jump and is the
distribution of vorticity in the wake for small plate deflections.

In order to couple the vorticity distribution γ with the plate deflection z, a kinematic
condition is enforced on the plate surface which can be written as

C

∫
〈γ (ξ )〉K(x − ξ ) dξ = (∂t + U∂x)z = w(x, t), (2.3)

where the function K is a kernel defined below, ξ is a dummy variable in place of
x, w is the normal plate velocity in the fluid reference frame, the brackets 〈.〉 again
denote averaging along H and the letter C across the integral sign indicates that the
Cauchy principal value should be taken. Since this inverse problem can have non-
unique solutions, the Kutta condition is also used at the trailing edge, i.e. p(L−) = 0.
The kernel K in (2.3) expresses the influence of a vertical vorticity line located at
ξ on the z-component of the fluid velocity in x. For an infinite span, the azimuthal
velocity of a point vortex in two dimensions yields the kernel K(X) = 1/(2πX) used
in all the two-dimensional models. For an asymptotically small H Lighthill’s slender
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body theory is equivalent to taking K(X) = sgn(X)/πH . In Eloy et al. (2007), we have
shown that an approximate kernel can be used for any H

K(X) =
1

2πX
+

(
1

πH
− 1/π − 1/8

H + |X|

)
sgn(X). (2.4)

This kernel is constructed as a composite of the correct asymptotic expansions for
small and large H . Morevover, for all X, it has been shown to be within 2% of the
exact kernel, which cannot be expressed analytically.

Applying the operator ρ(∂t + U∂x) on (2.3) and integrating by parts yields the
following inverse problem for the pressure jump:

C

∫
〈∂ξp(ξ )〉K(x − ξ ) dξ = ρ(∂t + U∂x)

2z = ρ(∂t + U∂x)w. (2.5)

This Fredholm equation of the first kind has been solved in Eloy et al. (2007) to
address the flutter instability of the plate. But, since an integration by parts was
performed to obtain (2.5), the pressure jump is implicitly assumed to be non-singular
at the leading and trailing edges. At the trailing edge, this assumption is correct
because the singularity vanishes thanks to the Kutta condition. However, one expects
an inverse square-root pressure singularity at the leading edge. As we shall see in
§ 4, the instability characteristics are not greatly modified by the treatment of this
leading-edge singularity, probably because it corresponds to the clamped end of the
plate where pressure forces do no work. The model derived from Eloy et al. (2007)
will be called the model without singularity in the rest of the paper.

To assess the validity of this model and to allow comparisons with the two-
dimensional model of Kornecki et al. (1976), another approach has been used in the
present paper. It is valid in the limit of large aspect ratio and it will be referred to as
the asymptotic model. In this model, the two leading-order terms have been retained
in (2.4) leading to the kernel

K(X) =
1

2πX
+

1

8H
sgn(X) + O(H −2). (2.6)

Note that we have shown in Eloy et al. (2007) that this is the mathematically correct
expansion for H � |X|. The problem being linear by construction, the stability of this
fluid–structure coupling can be now addressed by assuming a Galerkin decomposition
for the deflection

z(x, t) =

∞∑
n=1

anzn(x)eiωt , (2.7)

where the zn are the orthogonal eigenmodes of a beam in vacuo thus satisfying the
proper boundary conditions. For a given Galerkin mode, one has then to invert
(2.3) with K given by (2.6) and insert the solution in (2.2) to find the corresponding
pressure jump 〈pn〉 exp(iωt). This procedure allows the leading-edge singularity to be
taken into account properly. The partial differential equation (2.1) is then reduced to
an eigenvalue problem for the complex frequency ω whose eigenmodes correspond to
the instability modes. For small flow velocities, all modes are stable (i.e. their complex
frequencies ω have a positive imaginary part). When U is larger than a critical flow
velocity Uc, one of the instability modes eventually becomes unstable.

Using L and L/U as characteristic length and time, the system parameters are
reduced to three dimensionless numbers: the reduced velocity U ∗, the mass ratio M∗
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Figure 2. Mode amplitude A (in arbitrary units) as a function of the reduced velocity U ∗.
Amplitude is plotted as filled triangles when velocity is increased and open triangles when it
is decreased. The experimental parameters are H ∗ =1 and M∗ = 0.6. The instability exhibits
a strong hysteresis with U ∗

c =10.3 and U ∗
d =8. However, the amplitudes are fitted well by the

square-root law A = 58(U ∗ − 7.4)1/2 (dashed line) suggesting a supercritical bifurcation.

and the aspect ratio H ∗ given by

U ∗ = LU
√

m/D, M∗ = ρL/m, H ∗ = H/L. (2.8)

With these dimensionless parameters, the present ‘asymptotic model’ and the ‘model
without singularity’ detailed in Eloy et al. (2007) permit the prediction of the critical
velocity U ∗

c (M∗, H ∗) and the dimensionless mode frequencies ω∗ = ωL/U . The results
of the two-dimensional model of Kornecki et al. (1976) have also been recalculated in
the present paper with better computer accuracy to allow comparisons. It is strictly
equivalent to the ‘asymptotic model’ for infinite span H .

3. Experimental setup
As sketched in figure 1(a) experiments were performed in a low-turbulence closed

wind tunnel of 80 × 80 cm2 cross-section. The wind velocity U could be varied
continuously up to 65 m s−1 and was measured with a Pitot tube. The plates were
clamped to a streamlined mast crossing the wind tunnel vertically. To ensure that the
mast had negligible effects on the instability, two masts of different cross-section were
used (mast 1: thickness × chord =4 mm × 20 mm; mast 2: 9 mm × 43 mm). Plates were
cut from Mylar sheets of mass per unit area m =0.14 kg m−2 and flexural rigidity
D = 0.48 × 10−3 Nm. To estimate D, the deflection due to gravity was measured for
horizontally clamped Mylar strips of various lengths. The plate length L was varied
between 2 and 30 cm for a thickness h = 0.16 mm.

In all experiments presented in this paper, the same protocol has been followed.
The plate is clamped to the mast and the flow velocity is slowly increased starting
from zero. At small velocities the plate appears stable, i.e. steady and aligned with
the flow. Eventually, for a critical flow velocity U ∗

c , the plate flutters spontaneously
with a large amplitude and a well-defined frequency. Then the flow velocity is slowly
decreased in small decrements until the plate returns to its stable state at another
critical velocity U ∗

d as illustrated in figure 2.
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Visualizations were carried out through the top wall of the wind tunnel with a
high-speed video camera aligned with the y-axis (see figure 1a). The top edge of
the plate was painted white and illuminated to record its motion and aid measuring
the flutter frequency. The camera was operating at 300 Hz with a 512 × 512 pixel
resolution and the exposure time was varied between 300 and 1500 μs. The camera
visualizations are used to extract the flutter amplitude A and its angular frequency
ω∗ by detecting in each snapshot of the plate its deflection at 3/4 of the total plate
length.

4. Results
The flutter amplitude A is plotted in figure 2 as a function of the reduced velocity;

this plot exhibits a hysteretic behaviour. This has been observed in all experiments
with sufficiently large aspect ratio (H ∗ � 1). This hysteresis together with the large
mode amplitude observed at threshold suggests a subcritical bifurcation as recently
suggested by the numerical results of Alben & Shelley (2008). Note however that
the wideness of the hysteresis loop observed in the present experiments is of the
order of 20% (it is defined as (U ∗

c − U ∗
d )/U ∗

c ) whereas it is only of the order of 1%
in the simulations of Alben & Shelley (2008). In other numerical models (Yadykin
et al. 2001; Tang et al. 2003; Tang & Päıdoussis 2007), the bifurcation is found to be
supercritical. Figure 2 shows that the amplitudes near threshold can be reasonably
well fitted with a square-root law giving evidence that the bifurcation could indeed
be supercritical and that the observed hysteresis could just be an artifact as discussed
below.

The critical velocities U ∗
c and U ∗

d are plotted in figure 3 as a function of the aspect
ratio H ∗ and the mass ratio M∗. First the plate span is varied with the plate length
remaining constant. This allows the aspect ratio to be varied without changing the
other parameters. As expected from slender body theory, the critical velocity tends to
decrease as aspect ratio is increased. In figure 3(a) two regimes can be distinguished.
For small aspect ratio (H ∗ � 1), the measured critical velocities are predicted well by
the linear stability analysis and the hysteresis is very small if not absent. For larger
aspect ratio (H ∗ � 1) the hysteresis greatly increases. The experimental data points are
also more scattered. For these large aspect ratios, the linear stability analysis tends
to underestimate the critical velocity U ∗

c . Moreover, this threshold seems to slightly
increase for 1 <H ∗ < 3 unlike to the decreasing threshold U ∗

d which remains close to
the predictions.

Figure 3(a) also permits quantification of the error made by the ‘model without
singularity’. It can be seen that it does not exactly converge to the two-dimensional
limit when aspect ratio tends to infinity but is slightly lower. As explained above,
this is because in this model the pressure jump is assumed to be regular at the
leading edge whereas, in the ‘asymptotic model’ and in the two-dimensional model of
Kornecki et al. (1976), the pressure jump has the physically correct inverse-square-root
singularity.

In figure 3(b), the aspect ratio has been kept constant (H ∗ = 1) by varying the plate
length and span by the same factor. The measured critical velocity U ∗

c is compared
to the present theoretical predictions and to the two-dimensional model of Kornecki
et al. (1976). Experimental data from Huang (1995) are also reported although these
experiments have been carried out with plates spanning on the entire tunnel width with
a 2 mm clearance. This experimental setup was expected to model a two-dimensional
flow. In the present analysis, the finiteness of the span is taken into account, leading to
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Figure 3. Critical velocities U ∗
c and U ∗

d as a function of (a) the aspect ratio H ∗ for M∗ = 0.6
and (b) the mass ratio M∗ for H ∗ = 1. Filled squares and triangles correspond to measured
U ∗

c for masts 1 and 2 respectively and the corresponding open symbols refer to U ∗
d . Crosses

correspond to the experiments of Huang (1995) for 0.6 <H ∗ < 1.5. The thick solid line is the
three-dimensional ‘model without singularity’ (Eloy et al. 2007) and the thin solid line is the
‘asymptotic model’ of the present paper for the same parameters. The dashed line is the slender
body theory (similar to Lemaitre et al. 2005) and the dash-dotted line the two-dimensional
theory with circulation (as Kornecki et al. 1976, with better computer accuracy).

a smaller pressure jump 〈p〉 in (2.1) compared to the two-dimensional model and thus
a better prediction of the instability threshold. The three models permit the prediction
of different instability modes as M∗ is increased as illustrated by the different lobes
in figure 3(b). If modes are numbered by order of ascending frequencies, mode two is
observed for the smallest mass ratios (M∗ � 1.5). This single-neck mode is pictured
in figure 4(a, b). For larger mass ratios (1.5 � M∗ � 5), mode three, a double-neck
mode, is the first unstable one as illustrated in figure 4(c, d), and for even larger mass
ratios (M∗ � 5), one expects to observe higher-order modes. Note that mode one (the
mode with the smallest frequency) is never unstable for a clamped–free plate and
accordingly never observed in the experiments (as discussed in Guo & Päıdoussis
2000). In other words, as M∗ increases, the typical mode wavelength λ is a smaller
fraction of the plate length L and therefore if the aspect ratio is kept constant, H/λ
increases. This span to wavelength ratio has to be large for a two-dimensional theory
to be valid and this explains why the difference between the results of the two- and
three-dimensional theories reduces as M∗ increases in figure 3(b).
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Figure 4. Superimposed views of the flutter modes for two plates of the same aspect ratio
H ∗ = 1 but with different sizes: (a, b) M∗ = 0.74; (c, d) M∗ =1.94. These amplitudes are
obtained at threshold and the measured frequencies are (a) ω∗ = 1.82 for U ∗

c = 8.1 and
(c) ω∗ = 2.5 for U ∗

c = 10.9 . The experimental snapshots are compared with the modes predicted
by the present linear stability analysis (with arbitrary amplitude): (b) ω∗ = 2.4 for U ∗

c = 7.2
and (d) ω∗ = 3.7 for U ∗

c = 10.4.

In figure 4(a, c), superimposed views of the plate recorded with the camera during
one flutter period are shown. These visualizations were carried out at the instability
threshold U ∗

c for plates of the same aspect ratio H ∗ =1 but of two different mass ratios.
As predicted by the analysis, two different modes are observed as M∗ varies. From
these data, the mode shapes and their frequencies can be compared to the theoretical
predictions for the same parameters. However nonlinear effects are probably important
given the large amplitude observed at threshold and the agreement with the results
of the linear stability analysis are only qualitative.

5. Discussion
In this paper, we have studied experimentally and theoretically the flutter instability

of cantilevered flexible plates in uniform flow. We have shown in particular that the
three-dimensionality of the flow has to be taken into account to predict accurately
the instability threshold as the plate aspect ratio is varied. We have also shown that
hysteresis is present for plates of large aspect ratio and that the instability threshold
measured when increasing the velocity does not converge towards the two-dimensional
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limit as the aspect ratio tends to infinity. These experimental results are now discussed
with regard to the assumptions made in the stability analysis.

In the experiments with large aspect ratio (H ∗ � 2), we have observed that the flutter
mode is no longer purely one-dimensional as the top corner flutters with a larger
amplitude than the rest of the plate. Moreover, in some experiments with a very large
aspect ratio (H ∗ =4) and for flow velocity just below threshold, the same top corner
flutters while the rest of the plate is still motionless. These two-dimensional motions
indicate that the Euler–Bernoulli beam equation is no longer valid for the plate and
one should use the nonlinear Föppl–von Kármán equations once the deflection along
the span is of the order of the plate thickness (see for instance Landau & Lifschitz
1986). Several reasons may account for the two-dimensional deflections of the plate.
First, the pressure field over the plate is non-uniform along the span and exhibit a
maximum at mid-span and zeros at the plate edges. Second, the gravity field induces a
non-trivial stress tensor in the plate that results in compression at the top corner and
tension at the bottom corner. Since tension has a stabilizing effect, this may explain
why the plate deflection exhibits a larger amplitude at the top corner for large aspect
ratios.

The two-dimensional plate deflections can also originate from small imperfections
in the flow caused by the wind tunnel or the mast wake. These imperfections would
create flow unsteadiness and two-dimensional plate vibrations could be forced. A small
deflection along the span could also be caused by imperfections of the plate clamping
or planarity. But whatever their origin, when these two-dimensional deflections or
vibrations along the span are of the order of the plate thickness, they act as a
stiffening effect. Gauss curvature being energetically costly, once the plate is bent
along its span, it will bend with more difficulty along its length and the instability
will be delayed. However, once the plate is unstable, its flutter mode can be purely
one-dimensional, flattening any bending along the span, thus generating a hysteresis
loop. This could be an elegant explanation for the appearance of the hysteresis loop
only for aspect ratios larger than one; in this case, the elastic energy required to bend
the plate along its span becomes smaller than the energy to bend it along its length.
It is then reasonable that any defect may trigger deflections along the span of the
order of the plate thickness and thus hysteresis.

If one assumes that hysteresis is due to two-dimensional plate deflections and
that the bifurcation is supercritical, the decreasing threshold U ∗

d should converge to
the present theoretical predictions (based on one-dimensional flutter modes). This is
indeed what is observed in figure 3(a) giving another argument for a supercritical
bifurcation.

Undesired two-dimensional plate deflections can also be driven by gravity for very
long or very light plates. This happens when the mass ratio is too large causing the
plate to sag, twist or bend under its own weight. In the present study, these undesired
effects occur for M∗ � 5 and this is why the analysis has been restricted to M∗ < 2.
When these effects are present however, the instability threshold cannot be predicted
by simple means and this presumably explains why the critical velocity measured in
the experiments of Watanabe et al. (2002b) and Yamaguchi et al. (2000) for very large
M∗ is about an order of magnitude larger than the predictions of a two-dimensional
model.

In this paper, we have argued that the hysteresis loop could be caused by (undesired)
two-dimensional plate deflections. We have also suggested that the bifurcation could
be supercritical, contrary to most experimental works found in the literature. Our
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arguments are not solid proof however, and the nature of the bifurcation remains an
open question that needs further studies.

The authors acknowledge support from the French ANR (No. ANR-06-JCJC-0087).
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